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ABSTRACT 
 
A comprehensive simulation model of a novel rotating spool compressor is presented. The spool compressor 
provides a new rotating compression mechanism with easily manufactured components. Compared with other rotary 
compressors, the spool compressor presents the additional advantage of relocating the face sealing surfaces to the 
outer radius of the device. A detailed analytical geometry model of the spool compressor is presented which 
includes the geometry of the vane. This geometry model is included in a comprehensive model that includes sub-
models for friction, leakage, and heat transfer. The results of the comprehensive model were validated using 
experimental data from a prototype compressor. The prototype compressor has an overall displacement of 23.9 cm3, 
and was operated at rotational speeds between 1750 and 3250 rpm and pressure ratios between 2.1 and 2.9 using 
R410A as the working fluid. The model predicts the volumetric and overall isentropic efficiencies of the prototype 
compressor to within 6.3% and 11.2% MAE, respectively. The trends and spread in the data indicate that additional 
effort should be focused on the operation of the active sealing elements within the compressor. 

 
1. INTRODUCTION 

 
The rotating spool compressor is a novel rotary compressor mechanism most similar to the sliding vane compressor. 
Primary differences are described by Kemp et al. (2008, 2010) and include three key differences from a sliding vane 
compressor.  

• The vane is constrained by means of an eccentric cam allowing its distal end to be held in very close 
proximity to the housing bore (typically less than 0.30mm) while never contacting the bore. 

• The rotor has affixed endplates that rotate with the central hub and vane forming a rotating spool. 
• The practical use of dynamic sealing elements to minimize leakage between the suction and compression 

pockets as well as between the process pockets and the compressor containment 
These differences are shown in Figure 1 which presents a cutaway view of a rotating spool compressor with the key 
geometric features highlighted. 
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Figure 1: Cutaway view of rotating spool compressor mechanism with key components highlighted. 
 
Due to the ever increasing need for increased performance envelopes and energy efficiency, air conditioning and 
refrigeration system technologies have greatly evolved over the last 30 years. Shortly after the inception of vapor 
compression systems, the market was dominated by two types of compressors, the reciprocating compressor for 
smaller cooling capacity systems and the centrifugal compressor for larger cooling capacity systems. This was 
dictated, for the most part, from a knowledge base and manufacturing capability (Soumeri, 2010). This gave way to 
various compressor designs implemented over the next 30 years that capitalized on newer manufacturing technology 
and met the ever increasing efficiency requirements dictated by regulation. By example ASHRAE 90.1 has 
mandated an improvement in chiller efficiency of 61% since 1977 while employing refrigerants with lower cycle 
efficiency (Lord, 2009). This has produced a current technical profile in the market that encompasses at least seven 
fundamental device types in various configurations with various optimum technical features.  
 
More demand for higher efficiency components has resulted in a renewed interest in detailed compressor modeling 
to predict the performance of novel compressors. A recent approach to compressor modeling, called the 
comprehensive approach, has provided a complete analysis of positive displacement compressors. The 
comprehensive modeling approach relies on the unsteady mass and energy balance of a control volume, similar to 
that of Ooi and Wong (1997), with sub-models for each of the key physical phenomenon. Kim and Groll (2007) 
utilized the comprehensive approach for the modeling of a novel bowtie compressor. This type of compressor is 
based on the Beard-Pennock mechanism, which provides capacity control in a fixed volume device. Jovane (2007) 
applied the comprehensive approach to a novel rotary compressor, called a z-compressor. More recently, Mathison 
et al. (2008) developed a comprehensive model for a two-state rotary compressor, which provided insight into the 
optimum intermediate pressure for the best cycle and compressor efficiency. This work was continued by applying 
the approach to a rotary compressor with vapor injection as well as the novel rotary spool compressor (Mathison, 
2011). Bell (2011) presented another recent addition to the applications of comprehensive modeling by examining 
the impact of oil flooding on scroll compressors. The comprehensive model provided a deeper insight into the 
unique internal performance of a scroll compressor flooded with oil. This allowed for a numerical optimization of 
scroll wraps for use in oil flooding, which may have been costly and time consuming to obtain experimentally. 
Finally, Bradshaw et al. (2011) applied the comprehensive modeling approach to a linear compressor for electronics 
cooling.  
 
The variety of compressor types analyzed display the versatility of this modeling approach, which is why it is 
utilized in this work. First, an analytical model of the spool compressor geometry is presented, which will then be 
utilized in a comprehensive model. The results from this model are then compared against experimental results from 
a prototype compressor. 
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2. GEOMETRY MODEL OF A ROTATING SPOOL COMPRESSOR 
 

The analytical expressions describing the spool compressor geometry are described in this section. Figure 2 shows 
simplified spool compressor geometry and identifies the polar coordinates used in the analysis. At any instant in the 
compressor rotation, the gas occupies either the suction, compression, or discharge chambers. These chambers are 
separated by the gate and the point referred to as Top Dead Center (TDC) as shown in Figure 2. This figure shows 
the center of rotation (point O), at the rotor center, the leading (point A) and trailing (point B) end of the compressor 
vane as well as the vane center (point C). 
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Figure 2: Simplified spool compressor planar geometry schematics highlighting global coordinates (left) and 
additional geometric vectors (right). 

 
To calculate the volumes of the spool compressor a vector describing the position of the spool housing (stator) 
relative to the axis of rotation is developed. Utilizing the law of cosines, this vector can be written in terms of the 
housing radius and eccentricities, which are constants, and the angle of rotation of the rotor, 
 

 2 2 2 2cos coss sr e e e Rθ θ= − + − +  (1) 

 
where the lower limit of the eccentricity is given as: 
 
 s re R R= −  (2) 

 
Then, to identify the movement associated with the tip seals, the vector from point O to C is calculated as follows: 
 
 cos( )cr e θ π= −  (3) 

 
The vector describing the length of the vane as a function of rotor angle is described as,  
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 cos( )v v c gr R r R e θ π= − = − −  (4) 

 
where the length of the vane has an upper limit of, 
 

 2 2
v sR R e= −  (5) 

 
Finally, the vector describing the movement of the vane tip seal can be written as, 
 
 t s vr r r= −  (6) 

 
The vectors described above parameterize the key surfaces within a rotary spool compressor as a function of the 
rotor angle. Thus, the area of the suction, compression, and discharge chambers can be evaluated as a function of the 
rotor angle as well and calculated using: 
 

 

2 2

0 0

2 2

2 2
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∫ ∫

∫ ∫

 (7) 

 
for 0 θ π< < , and repeated for π θ π< < 2 . As the expression given in Equation (1) is unable to be integrated in 
closed form, the solution to each area integration is computed numerically using a finite difference method. 
Additionally, the rotor is slightly inset into the spool housing at the location of the TDC, this is known as the TDC 

relief. The depth of the TDC relief is an input to the geometry model and at these angular locations, s rr R= . 

Finally, the volume of each chamber can be computed by realizing that the geometry is planar, 
 
 ( ) ( ) sV A hθ θ=  (8) 

 
2.1 Spool Vane Geometry 
The previous analysis assumes that the vane does not take up any of the volume within the compressor chambers. To 
account for this inaccuracy the following analysis is used to calculate the volume of the vane and tip seal within 
each chamber at each rotor angle. Figure 3 shows a close up of the vane geometry used for this analysis with the key 
dimensions identified. 
 
The vane also employs planar geometry and thus, the vane analysis begins by calculating the area of the section of 
the vane that is within the rotor, which is fixed: 
 

 1 2
,

1
22 tan

r

v

v r v r
r

w
A R w R

R
−
 
 = +
 
 

 (9) 
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Figure 3: Close-up schematic of simplified spool vane and dynamic tip seal geometry included in model. 
 
Then, the total variable area of the vane as it moves throughout the rotation, including the area within the rotor, is 
calculated as follows: 
 

 ( )( )2

,
12 2 tan8v v v v v t v t t c vA R w w w r w r Rθ = − − + −
 

 (10) 

 
Finally, since the only area of concern is the area pushed into one of the compressor chambers, the net gate area 
becomes: 
 
 , ,v v v v rA A A= −  (11) 

 
where the area of the vane at point B is calculated in a similar way with the vectors offset by π . Using the gate 
area, the chamber volumes calculated in the previous section are modified as follows, 
 

 

1
2

1 1
2 2

1
2

s s v sA

c c v s v sA B

d d v sB

V V A h

V V A h A h

V V A h

= −

= − −

= −

 (12) 

 
for 0 θ π< < , and repeated for π θ π< < 2 . Additional considerations for the situation when the vane passes 
through the TDC plane are also considered and included in the results but the analysis is omitted from this work for 
brevity. 
 
The results of the geometry analysis are shown in Figure 4, which presents the final chamber volumes and rate of 
change of chamber volumes for each of the three chambers over one rotation of the spool rotor. 
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Figure 4: Results of spool geometry model, chamber volumes (left) and derivative of volume (right) as a function of 
rotor angle for spool compressor prototype RCP 4.2 as presented in Orosz et al. (2012). 

 
Moving from the angle of 0 towards π , the suction volume initially starts near zero and displays a small expansion 

and compression prior to 2
π , which is easier to observe in the right figure. This is a result of a combination of the 

TDC relief region and the vane geometry. The TDC relief region is the small region near the TDC plane that the 
spool housing is manufactured with the same radius as the rotor. This elongates the leakage gap across the TDC 
plane and reduces suction to discharge leakage. Since the radius of the stator and rotor are the same in this region the 
chamber volume is only impacted by the movement of the vane, which is beneath the rotor surface at this location. 
When the vane moves from TDC further into the suction chamber, past the TDC relief region, the vane begins to 
move out of the rotor, decreasing the volume, but the suction chamber begins to form as a result of the differences in 
radii of the rotor and stator. However, until roughly 4

π , the movement of the vane dominates the chamber volume 

development which leads to a small compression volume before the suction process occurs.  
 
The remaining suction process occurs until π , when the backside of the vane (point B) passes through the TDC 
plane and begins to generate another suction chamber. The gas in the previous suction chamber becomes the 
compression volume. This volume continues to expand until 3

2
π .  Then, the chamber volume decreases until π2 , 

when the front side of the vane (point A) passes through the TDC plane. The compression chamber then becomes 
the discharge chamber as the back side of the gate (point B) rotates through another half rotation, pushing the gas 
out the discharge chamber. The process in all chambers is periodic about every half rotation and an entire process 
takes one and a half rotations to complete. Thus, for each rotation, two suction, compression, and discharge 
processes occur. 
 

3. COMPREHENSIVE MODEL DEVELOPMENT 
 
A comprehensive compressor modeling approach is utilized to predict the performance of the rotating spool 
compressor. This approach has been presented in detail previously for other positive displacement compressors 
(Bradshaw et al. 2011, Bell 2011, Mathison et al. 2008, 2011). The approach relies on a governing set of equations 
which are derived from a mass and energy balance within the working volumes of a positive displacement 
compressor: 
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 ( )1 1
in out

d dV
m m

d V d

ρ ρ
θ θ ω

 = − + −  
∑ ∑ɺ ɺ  (13) 

 

 
( )1

in in out out

dV u
h uV V Q m h m h

ddT
ud V
T

ρρ ρ
θ ρ θ ω

θ ρ

 ∂ ∂− − + + + − ∂ ∂ =
∂
∂

∑ ∑ɺ ɺ ɺ

 (14) 

 
These equations are enforced in each compressor chamber for each rotor angle. The equations also require inputs 
from a variety of sub-models including friction, leakage, valve, and heat transfer sub-models. The heat transfer sub-
model utilizes a spiral heat exchange model to calculate the convective heat transfer coefficient. The correlation was 
developed for different geometries but it has been shown to be suitable for rolling piston compressors, which have a 
similar internal geometry to a spool compressor (Mathison, 2008). The valve model employed is a dynamic valve 
model with two modes of operation, as presented in Kim and Groll (2007) and Bradshaw et al. (2011). The friction 
models account for friction between the stator (housing) and rotor in the TDC relief region, from the tip seal on the 
stator (housing), and from the spool seals. An oil film shear model is utilized with the gap between each surface as 
an input to the friction and the leakage models. 
 
3.1 Mass Flow and Leakage Models 
Figure 5 shows a schematic of the 10 leakage paths accounted for in the model. The leakage paths across the TDC 
region and across the spool seals are modeled as compressible flow with friction (fanno flow), since the ratio of the 
leak path to height is high. All remaining leak paths are modeled as isentropic compressible flow through a nozzle. 
The leakage gap widths for the spool seals, tip seals, and TDC clearance were used to adjust the model results. 
Reasonable estimations for these gaps are known but they are difficult to measure accurately. The remaining leakage 
gaps are measured and this additional geometry information is used as inputs to the leakage model. The mass flow 
through the suction and discharge openings are also modeled as isentropic compressible flow through a nozzle.  
 
 
 

�

�

�

�

�����

��  
 �

��  
 �

��  
 �

��� 
 �� 
 ��	 
 ��

��� 
 �� 
 ��	 
��

��� 
��

��� 
 ��

        

������

��������

�
����������

���������

������������ �!���"�#

�������� �!����"$#

�	
���� �!����"�#

���
����������� �!����"%#

 
 

Figure 5: Schematic of leak paths considered in the comprehensive model, looking at the planar view (left) and the 
normal view (right). 

 
4. MODEL RESULTS COMPARED WITH EXPERIMENTAL RESULTS 

 
The comprehensive model results are compared with experimental data from the prototype spool compressor RCP 
4.2 presented in Orosz et al. (2012), which has a displaced volume of 23.9 cm3. This data was collected utilizing the 
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hot-gas bypass load stand also presented in Orosz et al. (2012). The compressor was operated at rotational speeds 
from 1750 to 3250 rpm and suction conditions at 905 kPa and 11 °C pressure and superheat, respectively, using 
R410A as the working fluid. The discharge pressure was varied to achieve pressure ratios between 2.1 and 2.9. 
Using the geometry presented in Section 2 and the overall model from Section 3 with the appropriate geometric 
inputs to represent RCP 4.2, the comprehensive model is compared to experimental data. 
 
Figure 6 shows parody plots comparing the experimental volumetric and overall isentropic efficiencies compared 
with the model predicted values. The Mean Absolute Error (MAE) of each comparison is 6.3% and 11.2% for the 
volumetric and overall isentropic efficiencies, respectively. 
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Figure 6: Model predicted volumetric (left) and overall isentropic (right, error within marker width) efficiencies of 
the prototype spool compressor. 

 
The volumetric efficiency on the left of Figure 6 shows that while most points are predicted within 10% there is a 
trend in the error. This is indicative of the model not capturing all of the actual compressor behavior. The overall 
isentropic efficiency shows increased scatter and error. An increase in error in the overall isentropic efficiency is 
typical as this metric includes error from all of the sub-models combined. However, the amount of error in a small 
range of experimental efficiencies is also indicative of a trend in the actual performance that is not captured.  
 

5. CONCLUSIONS AND FUTURE EFFORTS 
 
An analytical model of the rotating spool compressor geometry is presented which includes the chamber volumes 
and the vane geometry. This model is incorporated into a comprehensive compressor model describing the rotating 
spool compressor. The model results are compared against test data collected using a prototype spool compressor at 
a variety of rotational speeds and operating conditions.  
 
The comprehensive model predicts the volumetric efficiency within a reasonable amount of error. However, the 
trend in the error indicates that one or more of the sub-models do not accurately capture the behavior of the 
compressor. This is also seen in the overall isentropic efficiency where the error is exacerbated. While the trend is 
not obvious from this comparison the level of error indicates that there are still model inaccuracies. 
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Kemp et al. (2012, 2012a) presents results that indicate a high level of sensitivity of the experimental performance to 
changes of the design of both the spool seals and tip seals. Both seals are dynamic, activated seals, which are 
actuated by the pressure differentials created by the compressor. The leakage and friction sub-models assume that 
the spool seals and tip seals function the same regardless of the speed or operating condition. This behavior is 
inaccurate and the impact of an improved sub-model for both the tip seals and spool seals warrants further 
investigation. 
 

NOMENCLATURE 
 
Ac Area of compression chamber, m2 

Ad Area of discharge chamber, m2 
As Area of suction chamber, m2 

Av Area of vane within working chambers, m2 

Av,r Area of vane within the rotor, m2 

Av,v Total area of compressor vane, m2 

e Eccentricity of compressor, m 
h Enthalpy, kJ kg-1 
hs Height of stator (housing), m 

inmɺ  Mass flow in, kg s-1  

outmɺ  Mass flow out, kg s-1  

Qɺ  Heat transfer rate, W 

Rr Radius of rotor, m 
Rs Radius of stator (housing), m 
Rv Radius of vane, m 
rr Vector describing rotor surface, m 

rv Vector describing position of vane tip, m 
rt Vector describing position of tip seal, m 
rc Vector describing center of the vane, m 
T Temperature, K 
u Internal energy, kJ kg-1 
Vc Compression chamber volume, m3 

Vd Discharge chamber volume, m3 
Vs Suction chamber volume, m3 
wt Width of tip seal, m 
wv Width of vane, m 
 
Greek Letter 
θ  Rotor angle, rad 
ρ  Density, kg m-3 

ω  Rotational speed, rad s-1 
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